119 research outputs found

    Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery

    Get PDF
    Survival of glioblastoma patients has been linked to the completeness of surgical resection. Available data, however, were generated with adjuvant radiotherapy. Data confirming that extensive cytoreduction remains beneficial to patients treated with the current standard, concomitant temozolomide radiochemotherapy, are limited. We therefore analyzed the efficacy of radiochemotherapy for patients with little or no residual tumor after surgery. In this prospective, non-interventional multicenter cohort study, entry criteria were histological diagnosis of glioblastoma, small enhancing or no residual tumor on post-operative MRI, and intended temozolomide radiochemotherapy. The primary study objective was progression-free survival; secondary study objectives were survival and toxicity. Furthermore, the prognostic value of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was investigated in a subgroup of patients. One-hundred and eighty patients were enrolled. Fourteen were excluded by patient request or failure to initiate radiochemotherapy. Twenty-three patients had non-evaluable post-operative imaging. Thus, 143 patients qualified for analysis, with 107 patients having residual tumor diameters ≤1.5 cm. Median follow-up was 24.0 months. Median survival or patients without residual enhancing tumor exceeded the follow-up period. Median survival was 16.9 months for 32 patients with residual tumor diameters >0 to ≤1.5 cm (95% CI: 13.3–20.5, p = 0.039), and 13.9 months (10.3–17.5, overall p < 0.001) for 36 patients with residual tumor diameters >1.5 cm. Patient age at diagnosis and extent of resection were independently associated with survival. Patients with MGMT promoter methylated tumors and complete resection made the best prognosis. Completeness of resection acts synergistically with concomitant and adjuvant radiochemotherapy, especially in patients with MGMT promoter methylation

    Bacterial Chemotaxis in an Optical Trap

    Get PDF
    An optical trapping technique is implemented to investigate the chemotactic behavior of a marine bacterial strain Vibrio alginolyticus. The technique takes the advantage that the bacterium has only a single polar flagellum, which can rotate either in the counter-clock-wise or clock-wise direction. The two rotation states of the motor can be readily and instantaneously resolved in the optical trap, allowing the flagellar motor switching rate to be measured under different chemical stimulations. In this paper the focus will be on the bacterial response to an impulsive change of chemoattractant serine. Despite different propulsion apparati and motility patterns, cells of V. alginolyticus apparently use a similar response as Escherichia coli to regulate their chemotactic behavior. Specifically, we found that the switching rate of the bacterial motor exhibits a biphasic behavior, showing a fast initial response followed by a slow relaxation to the steady-state switching rate . The measured can be mimicked by a model that has been recently proposed for chemotaxis in E. coli. The similarity in the response to the brief chemical stimulation in these two different bacteria is striking, suggesting that the biphasic response may be evolutionarily conserved. This study also demonstrated that optical tweezers can be a useful tool for chemotaxis studies and should be applicable to other polarly flagellated bacteria

    Opposing Effects of the Angiopoietins on the Thrombin-Induced Permeability of Human Pulmonary Microvascular Endothelial Cells

    Get PDF
    BACKGROUND: Angiopoietin-2 (Ang-2) is associated with lung injury in ALI/ARDS. As endothelial activation by thrombin plays a role in the permeability of acute lung injury and Ang-2 may modulate the kinetics of thrombin-induced permeability by impairing the organization of vascular endothelial (VE-)cadherin, and affecting small Rho GTPases in human pulmonary microvascular endothelial cells (HPMVECs), we hypothesized that Ang-2 acts as a sensitizer of thrombin-induced hyperpermeability of HPMVECs, opposed by Ang-1. METHODOLOGY/PRINCIPAL FINDINGS: Permeability was assessed by measuring macromolecule passage and transendothelial electrical resistance (TEER). Angiopoietins did not affect basal permeability. Nevertheless, they had opposing effects on the thrombin-induced permeability, in particular in the initial phase. Ang-2 enhanced the initial permeability increase (passage, P = 0.010; TEER, P = 0.021) in parallel with impairment of VE-cadherin organization without affecting VE-cadherin Tyr685 phosphorylation or increasing RhoA activity. Ang-2 also increased intercellular gap formation. Ang-1 preincubation increased Rac1 activity, enforced the VE-cadherin organization, reduced the initial thrombin-induced permeability (TEER, P = 0.027), while Rac1 activity simultaneously normalized, and reduced RhoA activity at 15 min thrombin exposure (P = 0.039), but not at earlier time points. The simultaneous presence of Ang-2 largely prevented the effect of Ang-1 on TEER and macromolecule passage. CONCLUSIONS/SIGNIFICANCE: Ang-1 attenuated thrombin-induced permeability, which involved initial Rac1 activation-enforced cell-cell junctions, and later RhoA inhibition. In addition to antagonizing Ang-1, Ang-2 had also a direct effect itself. Ang-2 sensitized the initial thrombin-induced permeability accompanied by destabilization of VE-cadherin junctions and increased gap formation, in the absence of increased RhoA activity

    Evaluation of the implementation of an integrated primary care network for prevention and management of cardiometabolic risk in Montréal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of this project is to evaluate the implementation of an integrated and interdisciplinary program for prevention and management of cardiometabolic risk (PCMR). The intervention is based on the Chronic Care Model. The study will evaluate the implementation of the PCMR in 6 of the 12 health and social services centres (CSSS) in Montréal, and the effects of the PCMR on patients and the practice of their primary care physicians up to 40 months following implementation, as well as the sustainability of the program. Objectives are: 1-to evaluate the effects of the PCMR and their persistence on patients registered in the program and the practice of their primary care physicians, by implementation site and degree of exposure to the program; 2-to assess the degree of implementation of PCMR in each CSSS territory and identify related contextual factors; 3-to establish the relationships between the effects observed, the degree of PCMR implementation and the related contextual factors; 4-to assess the impact of the PCMR on strengthening local services networks.</p> <p>Methods/Design</p> <p>The evaluation will use a mixed design that includes two complementary research strategies. The first strategy is similar to a quasi-experimental "before-after" design, based on a quantitative approach; it will look at the program's effects and their variations among the six territories. The effects analysis will use data from a clinical database and from questionnaires completed by participating patients and physicians. Over 3000 patients will be recruited. The second strategy corresponds to a multiple case study approach, where each of the six CSSS constitutes a case. With this strategy, qualitative methods will set out the context of implementation using data from semi-structured interviews with program managers. The quantitative data will be analyzed using linear or multilevel models complemented with an interpretive approach to qualitative data analysis.</p> <p>Discussion</p> <p>Our study will identify contextual factors associated with the effectiveness, successful implementation and sustainability of such a program. The contextual information will enable us to extrapolate our results to other contexts with similar conditions.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01326130">NCT01326130</a></p

    C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gypsy/Ty3-Related Retrotransposon

    Get PDF
    Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology

    Targeting Protein-Protein Interactions for Parasite Control

    Get PDF
    Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific ortholgous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable

    Pseudomonas syringae pv. actinidiae (PSA) Isolates from Recent Bacterial Canker of Kiwifruit Outbreaks Belong to the Same Genetic Lineage

    Get PDF
    Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks

    The Extended Cleavage Specificity of Human Thrombin

    Get PDF
    Thrombin is one of the most extensively studied of all proteases. Its central role in the coagulation cascade as well as several other areas has been thoroughly documented. Despite this, its consensus cleavage site has never been determined in detail. Here we have determined its extended substrate recognition profile using phage-display technology. The consensus recognition sequence was identified as, P2-Pro, P1-Arg, P1′-Ser/Ala/Gly/Thr, P2′-not acidic and P3′-Arg. Our analysis also identifies an important role for a P3′-arginine in thrombin substrates lacking a P2-proline. In order to study kinetics of this cooperative or additive effect we developed a system for insertion of various pre-selected cleavable sequences in a linker region between two thioredoxin molecules. Using this system we show that mutations of P2-Pro and P3′-Arg lead to an approximate 20-fold and 14-fold reduction, respectively in the rate of cleavage. Mutating both Pro and Arg results in a drop in cleavage of 200–400 times, which highlights the importance of these two positions for maximal substrate cleavage. Interestingly, no natural substrates display the obtained consensus sequence but represent sequences that show only 1–30% of the optimal cleavage rate for thrombin. This clearly indicates that maximal cleavage, excluding the help of exosite interactions, is not always desired, which may instead cause problems with dysregulated coagulation. It is likely exosite cooperativity has a central role in determining the specificity and rate of cleavage of many of these in vivo substrates. Major effects on cleavage efficiency were also observed for residues as far away as 4 amino acids from the cleavage site. Insertion of an aspartic acid in position P4 resulted in a drop in cleavage by a factor of almost 20 times

    HelmCoP: An Online Resource for Helminth Functional Genomics and Drug and Vaccine Targets Prioritization

    Get PDF
    A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html

    The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity

    Get PDF
    Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain
    corecore